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Abstract. We show the importance of exploiting the complementary convex structure for efficiently 
solving a wide class of specially structured nonconvex global optimization problems. Roughly 
speaking, a specific feature of these problems is that their nonconvex nucleus can be transformed into 
a complementary convex structure which can then be shifted to a subspace of much lower dimension 
than the original underlying space. This approach leads to quite efficient algorithms for many 
problems of practical interest, including linear and convex multiplicative programming problems, 
concave minimization problems with few nonlinear variables, bilevel linear optimization problems, 
etc. 
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1. Introduction 

In the deterministic approach to global optimization a question of fundamental 
importance is to exploit the mathematical structure of the problem under study. 
Therefore, it seems natural to ask: which kind of structure is most favourable? 

It is common knowledge that convex analysis has been one of the cornerstones 
of (local) optimization theory in the past four decades. In global optimization, 
although the convex structure will certainly still play a major role (at least because 
in most nonconvex problems convexity is present in a certain limited sense), there 
are sound reasons to believe that the complementary convex structure will be 
predominant. 

In fact, the space R” in which optimization problems are formulated is such that 
any point of it has a base of convex neighbourhoods. On the basis of this local 
convex structure of the space it can be shown that every closed set in R” is the 
projection of a set in RnC1 which is the difference of two convex sets, i.e., a 
complementary convex set (see [l] and appendix). Therefore, any continuous 
optimization problem in finite-dimensional space can be restated in the following 
general form 

minimize Z(x) subject to x E D\C , (1) 

where Z(x) is a linear function and C, D are convex sets. 
On the other hand, a conspicuous limitation of conventional local optimization 

methods is their ability of being trapped at a local minimum (or even a stationary 
point). Therefore, the core of a global optimization method is to deal with the 
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question of how to transcend stationarity, i.e., how to recognize that a given 
stationary point is actually a global minimizer and if it is not, how to proceed to a 
better feasible point. In a recent paper by Tuy and Horst [2] it has been shown 
that for a large variety of nonconvex global optimization problems the question of 
transcending stationarity can always be reduced to solving a particular problem of 
the following type: 

Given two convex sets C and D in R”, find a point x E D\C or else 
establish that D C C (i.e., D\C is empty). (Geometric Complementarity 
Problem (GCP) .) 

Thus, a complementary convex structure underlies every global optimization 
problem of a very wide class. Perhaps this structure is not always apparent and it 
is the hard work of the problem solver to disclose this structure and to bring it 
into a form amenable to computational analysis. In many cases of interest, 
however, this work turns out to be far rewarding: 

EXAMPLE 1. The problem of minimizing the product (c’x + d,)(c2x + d2) of 
two affine functions over a polytope M C {x: cix + d, > 0 (i = 1 = 1,2)} appears 
in certain applications in microeconomics, VLSI chip design, bond portfolio 
optimization, etc. . [3-61. Various solution methods have been proposed in the 
literature for this problem [7-lo]. It can be shown that the underlying GCP here 
involves a convex set C whose recession cone contains the cone {x: cix 2 0 
(i=l,2)}. B ase d on this specific property, an algorithm (even simpler than that 
of Konno-Kuno in [lo]) has been devised in [ll] that merely consists of solving 
the linear parametric program in usual form: 

minimize( cl + ~(c” - cl), x} s.t. x E M (a E [0, 11) (2) 

to obtain the sequence of breaking values CQ = 0 < (Ye < . . . < cy,,, = 1 along with, 
for each interval [ c+i, CZ~]( j = 1, . . , , N - l), a basic solution xi optimal for all 
(Y E [aj- i, aj]. Then a global optimal solution of the problem is xj*, where 

j* E argmin{(c’xi + dl)(c2xi + d2): j = 1, . . , N- l} . (3) 

EXAMPLE 2. A class of location problems [12] can be formulated as maximizing 
a function Z~==,~j(hj(x)) over x E R”, where each qj: R: - R, is a convex 
decreasing function such that lim qj(t) = 0 (t -+ 30) and each h, : R” + R, is a 
convex function such that lim h,(x) = +m (I x -+ m). Since the objective function 1 
is neither convex nor concave, a method was developed in [12] that only computes 
a local maximizer. However, here again the underlying GCP has a special 
structure, so that, as shown in [13], the problem can be solved through a sequence 
of unconstrained convex minimization subproblems of the form 

minimize 2 s,h,(x) over x E R” (sjzo,j=l,. . . ,p). 
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EXAMPLE 3. Certain hierarchical decision-making situations can be modelled by 
the following two level optimization problem (Stackelberg game): 

minimize clx + d1 s.t. x A,x+B,y~g,, xERP, 

where y solves min{d2y: A,x + B,y d g,, y E Rz} . (5) 

Although the model involves only linear functions, this is a difficult nonconvex 
problem, fraught with pitfalls (see [14]), for which so far developed algorithms 
have not always been successful. However, it appears that the complementary 
convex structure of this problem can be disclosed and analyzed. As it turns out 
[15] the recession cone of the set C in the corresponding GCP contains the cone 
{C-G Y>: 4~ d 0, d2y > O}. Due to this property, if rank(A,) = k (k d p) then the 
original problem in RP+q can be converted into a problem in Rk+‘, i.e., usually of 
much smaller dimension. In [15] a new solution method along this line has been 
developed that is better founded and more efficient than existing ones, at least 
when k is small compared to p + q. 

These examples demonstrate the importance of exploiting the complementary 
convex structure in deterministic global optimization. 

A common feature of all these examples is the possibility of associating with the 
given problem a GCP having some special structure that allows the problem to be 
reduced to a form more amenable to efficient solution methods. 

The purpose of the present paper is to generalize the situation encountered in 
the above examples and to develop a framework for exploiting the complemen- 
tary convex structure in a wide class of global optimization problems. 

The paper consists of 5 sections. In Section 2 we will introduce a general 
property (called “Generalized Rank k Property”) that allows a given GCP to be 
converted into a problem of smaller dimension. In Section 3 we will present a 
general method for handling GCP’s with the Generalized Rank k Property. In 
Section 4 we will discuss the convergence of the method and some other issues. 
Finally, Section 5 is devoted to some applications. 

2. Generalized Rank k Property 

One of the most successful ideas in convex optimization is the dualization of 
various concepts (polar sets, conjugate functions, dual programs, Lagrange 
multipliers, etc. . .). By dualization we can sometimes simplify or clarify a given 
situation, either by replacing a constrained problem with an unconstrained one, or 
by reducing the dimension of the problem, or by incorporating certain constraints 
into the objective to make the problem easier, and so on. 

In combinatorial optimization as well as in other fields of mathematics, the idea 
of dualization has proven very fruitful, too. Therefore, no wonder that this idea 
could play a major role in providing insight into the complementary convex 
structure in global optimization. This seems the more natural because in the 
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complementary convex structure convexity is present, either partially or in the 
other (opposite) way. 

A number of research works have already been done in this direction, though 
sometimes incidentally or indirectly and dealing only with some particular situa- 
tions [ll, 14-231. In the sequel we shall discuss a general transformation scheme 
based on dualization which may lead to quite efficient solution methods for a wide 
class of originally difficult problems. 

Consider the global optimization problem: 

(PI minimize f(x) subject to x E G , 

where G is a closed subset of R” and f(.x) is a continuous function defined on 
some open neighbourhood fl of G. Let X be the best feasible solution known so 
far (X may or may not be a stationary point obtained via a local optimization 
procedure). Denote F = {x E R : f(x) 3 f(X)}. Then in its primitive form the 
question of transcending the incumbent X amounts to solving the following 
subproblem 

Find a point x E G\F (or else establish that G C F) (6) 

In [2] Tuy and Horst have shown that the latter subproblem can always be 
reduced to a GCP as formulated in the Introduction. We are now interested in 
which conditions to impose on the structure of the sets F, G in order that the 
subproblem (6) can be transformed into a GCP of much smaller dimension than 
the original problem, and thereby efficiently solvable by currently available 
methods. 

For convenience we shall refer to a problem like (6) as a (G, F)-problem. 

DEFINITION 1. We shall say that the (G, F)-problem (6), where F is closed, 
has the Generalized Rank k Property if the following conditions hold: 

(i) There exist a mapping cp : R” * RP (p s n) together with a closed convex 
set 2 in RF such that x E F if and only if cp(x) E r?; 

(ii) c has the Rank k P roperty (k up) in the sense that its recession cone 
contains a polyhedral cone 

K={tERP: AtsO} 

where A is a q x p matrix with rank A = k; 
(iii) For every u E RLf the problem 

maximize (A’u, q(x)) subject to x E G 

(7) 

(8) 

can be solved by some known efficient algorithm. 

REMARK 1. When p = y1 and cp is the identity mapping the above property 
reduces to the Rank k Property as was introduced in [ll] and earlier studied in 
[16] (note that rank A = dim K”, where K* is the polar of K). 
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REMARK 2. In each example given in the Introduction the problem of trans- 
cending an incumbent X as formulated above has the Generalized Rank k 
Property. Indeed, in Example 1, k = 2 (actually the Rank 2 Property holds), 
G = M, cp = identity mapping, e = F, K = {t E R” : c’t 2 0 (i = 1,2)}. 

In Example 2, k =p, cp(x) = (h,(x), . . , h,(x)), c = {TV RP, : C~==,qj(tj) 2 
‘rc,qj(hj(X))}> K=R”, ( i.e., A = -1, I = identity matrix). Problem (8) here has 
the form (4). Example 3 will be discussed later (see Section 5). 

Let us mention two more examples among a host of others that can easily be 
constructed. 

EXAMPLE 4. Consider the problem 

minimize f(x) : = ,fil A(x) subject to x E M 

whereh:R-+R+(j=l,..., p) are positive-valued convex functions on an open 
convex set fi, while M is a convex subset of 0. Clearly the function f(x) is neither 
convex nor concave. For p = 2 this problem, which appears in several applications 
(see [3-6]), h as b een investigated by Kuno and Konno [24]. 

As above, let F = {x E a: f(x) >f(Z)}, G = M (i.e., consider the problem of 
transcending an incumbent X ). If we take p(x) = ( fi(x), . . . , fp(x)) and 

(10) 

then since the function t+ lly=, t, is quasiconcave on R “,, e is a closed convex set 
and x E F if and only if q(x) E E. Furthermore, from (10) we have 

so that 2; has the Rank p Property with K = RP, (A = -I, q = p). Finally, for any 
u E R z the problem (8) which here reads as 

D  

maximize - ,gl ujh(x) subject to x E M (11) 

is an ordinary convex programming problem, hence can be solved by efficient 
standard algorithms. Therefore, the Generalized Rank p Property holds. 

EXAMPLE 5. Consider the problem 

minimize f(x) := 5 log J(x) + min{ fi(x), . . . , f,(x)} s.t. x E M , 
j=l 

(14 

where f, and M are as in Example 4. 
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If we take cp(x) = (fi(n), . . . , f,(x)>, and 

E= tERP,: ilogt,+min{r,,.. { j=l 
..$Jzf(x)), 

then, since the function t-+ CTZ1 log tj + min{t,, . . . , tp} is concave on RP,, the 
set t is closed and convex and we have f(x) 2 f(X) if and only if p(x) E e. Again 
2; has the Rank p Property (with K = R “, ) and for any u E R “, the problem (8) 
has the same form as (11). Therefore, the Generalized Rank p Property holds for 
transcending an incumbent X in this problem. 

Thus, for many interesting problems arising from applications, the basic 
question of transcending stationarity, when formulated as a (G, F)-problem, has 
the Generalized Rank k Property. In the next section we proceed to show how, 
due to this property, each of these problems can be transformed into an easier 
problem in dimension k which can then be solved through a sequence of 
subproblems (8). 

3: How to Solve Problems with Generalized Rank k Property 

Let X E G be the best feasible solution so far known for problem (P) and let 
F = {x E R: f(x) af(X)} ( recall that R is an open neighbourhood of G over which 
f(x) is defined). L e us examine how to solve the corresponding (G, F)-problem, t 
assuming the Generalized Rank k Property stated above. 

Define the set 

i=cp(G)={tERP:t=+)forsomexEG}. (13) 

PROPOSITION 1. We have G C F if and only if 6 C ?. 
Proof. If G C F then for any t E 5, since t = q(x) for some x E G C F, it 

follows that t E e, i.e., fi C e. Conversely, if fi = e then for any x E G, since 
t E q(x) E fi, it follows that t E c, hence x E F, i.e., G C F. 

Clearly, whenever t E fi\? then t = cp(x) with x E G\F. Therefore, by Proposi- 
tion 1 the (G, F)-problem is equivalent to the following problem in RP : 

(6 (3 Find a point t E c,\e (or else establish that fi C 2;) . 

This is almost a GCP except that the set 5 needs not be convex. However, 
thanks to condition (iii) in the Generalized Rank k Property (namely, every 
problem of the form (8) can be efficiently solved), we shall see that this 
(5, e)-problem can be solved by the polyhedral annexation method earlier 
developed in [16] (see also [23] and [19]). 

Assume that we know a point to E fi rl int e;, e.g., to = cp(x”) where x0 E G fl 
int F, i.e., x0 is a feasible point with f(x”) >f(X) (we shall later comment on this 
assumption). Now define 

C&-t’, D=fi-t”. (14) 
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Then 

OEDnintC. 

Let C*, D* denote the polars of C, D respectively, i.e., 

C*={UERP:(U,t)4 WEC}, 

(15) 

D*={uERP:(zI,t)~l VtED}. (16) 

Observe that if C* C D* then (C*)* >(D*)*, hence DC C because always 
(D*)* 3 D, while (C*)* = C by the convexity and closedness of C. Furthermore, 
if a point u E C*\D *, then ( u, s) > 1 for at least some s E D, while (u, t) < 1 for 
all t E C, hence s E D\C. Therefore, instead of solving the (D, C)-problem we can 
solve the “dual” (C* , D*)-problem 

CC*, D*> Find a point u E C*\D* or else establish that C* C D* . 

From condition (ii) in the Generalized Rank k Property we have to + K C C, i.e., 
K C C, hence 

C*CK*={u: u=ATu for some uERT} (17) 

and since rank A = k it follows that dim K* = k (see, e.g., [26]). Specifically, if 
d, . . . ) uk are k linearly independent rows of A, then K*, and hence also C*, is 
contained in the subspace L of RP spanned by a’, . . . , ak. We see that (C*, D*) is 
actually a problem in L with dim L = k. 

Now define for each u E K* : 

g(u) = sup{(u, t): tE D} . (18) 

Obviously g(u) is a convex function on K*. Since u = ATu for some u E R z we 
have: 

g(u)=sup{(u,t): ED-t’}=sup{(u,t): t=cp(x)--(x0), XEG} 

=sup{(ATu,t): t=q(x)-q(x’), XEG} 

= sup{ (A%, q(x)) : x E G) - (A% v(x”)) , (19) 

so that computing the value of g(u) amounts to solving a problem of the form (8) 
(for which efficient algorithm is assumed to exist). On the other hand, since 
D* = {u : g(u) < l}, the (C*, D*)-problem now reduces to checking whether 
g(u) d 1 for all u E C*, i.e., whether 

max{ g(u) : u E C*} G 1 ? (20) 

This can be done as follows. First we note that since 0 E int C by (15) it follows 
from a well known property of polar sets (see, e.g. [26]) that C* is compact. Let 
S, be a polytope in L such that 

(1) C*CS,cK*; (21) 
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(2) the vertex set VI of S, is simple (i.e., is small and readily available). 

(We shall comment later on the construction of such a polytope). Since g(u) is 
convex, if g(u) < 1 for all u E VI then max{g(u): u E S,} < 1 and (20) will a 
fortiori hold. Therefore, we compute u* E argmax{ g(v) : u E VI}. If 

gb-4~ 1, 

then we are done: (20) holds, hence C* C D* and so X is a global minimizer. 
Otherwise, 

g(u’P 1, 

then u’@D*. Since ui E K*, we have u1 = ATu’ for some u1 E RT and referring 
to (19) let x1 E G be such that 

g(u’) = (A%’ , cp(x’) - cp(x”)) . 

Then the point t1 = I - cp(x”) = cp(x’) - to satisfies 

(t’, u’) =g(r?)>l. (22) 

There are two possibilities: 
(a) If xlg F then a point x1 has been found such that x1 E G\F, i.e., X* is better 

than i((G, F)-problem is solved); 
(b) If x1 E F, then from the definition of C, cp(x’) E 2, hence t’ E C and 

consequently ( t’, u ) < 1 for all u E C*. 
Remembering (22) we see that in the latter case the cut 

( tl, u ) s 1 

will eliminate u1 without excluding any point of C”. So the polytope 

s, = s, r-l {u : < tl, u s l} 

will still satisfy the same condition as (21) for S,, i.e., C* C S, C K*. On the other 
hand, since it obtains from S, by just an additional linear constraint, its vertex set 
V, can be derived from their vertex set VI of S, by currently known methods (see, 
e.g., [27], or [23]). Therefore, we can repeat the procedure with S, in place of S,. 
In this manner a nested sequence of polytope will be built 

K* 3 S, 3 S, 3. . . 3 S, 3 . . * 3 C* (23) 

such that: if the sequence terminates at some S, then either X is a global 
minimizer (when S, C D, i.e., g(u”) 4 1) or a solution xh better than X is obtained. 
In the next section we shall prove that the sequence can be infinite only when X is 
itself a global minimizer. 

Note that each S, can be viewed as the polar of some polytope Ph in R* such 
that KCP,,CCand P,CP,C***CPhC.. * Therefore, the method amounts to 
constructing a sequence of expanding polytopes in the hope that eventually some 
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P, will cover all of D. This explains the name “Polyhedral annexation” given to 
this kind of procedure (see [16] for an alternative presentation). 

Thus, given a feasible solution X’, we can solve the corresponding (G, F)- 
problem to check whether this is actually a global minimizer and if this is not, to 
find a better feasible solution x2. In the latter case we can go to another 
(G, F)-problem corresponding to some X2 equal to x2 or to a stationary point 
computed from x2 by local inexpensive methods. And so on. 

Of course, this scheme can be carried out only if the Generalized Rank k 
Property holds for every (G, F)-problem corresponding to successive current best 
solutions Xh (h = 1,2, . . .). Fortunately, in many cases the problem (P) has the 
following property. 

DEFINITION 2. We say that problem (P) has the Generalized Rank k Property 
if the following conditions hold: 

(i) There exist a mapping cp : R” + RP ( p c n) and for each y E f(G) a closed 
convex set CY in RP such that C, 3 C; for y < y’ and f(x) > y if and only if 
P(X) E q ; 

(ii) For every y the recession cone of C, contains the cone 

K= {tE RP: At=sO} , 

where A is a 4 x p matrix with rank A = k (k < p) ; 
(iii) For every u E R z the problem 

maximize( ATu, q(x)) subject to x E G (24) 

can be solved by some known efficient algorithm. 
Most often condition (i) holds in the following form: 
(i’) There exists a mapping cp : R”+ RP along with a continuous quasi-concave 

function $I defined on some convex set T C RP containing p(G) and such that 

f(x) = ~(cp(4) . 

Indeed, it is easily verified that (i’) implies (i) with I?~ = {t f T : G(t) 2 r}. Also 
it is easily seen that each problem given in examples 1, 2, 4, 5 above has the 
Generalized Rank k Property, with (i’) holding. 

When problem (P) itself has the Generalized Rank k Property as stated in 
Definition 2, then the sequence of (G, F)-problems corresponding to successive 
current best X ’ X 2, . . . can be incorporated into a unified process as follows. 

ALGORITHM 1 (for solving (P)) 

Initialization. 
Let X ’ be the best feasible solution available. Take a feasible solution x0 such that 
f(x”) >f(Z ‘). s e y1 = f(X ‘). Construct an initial polytope S, with a known vertex t 
set V, and such that Cy*, C 5, C K*. (C, = C, - cp(~‘)). Set 7, = V, , h = 1. 
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Iteration h = 1,2, . . . 
Step 1. For each u E l?h solve the subproblem 

Wu) max{(u, I&X)): x E G} (25) 

to obtain its optimal solution x(u) and the value g(u) = (u, cp(x(u)) - cp(x”)). 
Step 2. Compute uh E argmax{ g(u) : u E V,}. If g(u”) < 1 then terminate : X It is 

a global minimizer. Otherwise, 
Step 3. Let xh = x(u”). If f(x”) < K then set Xh+’ = xh, yh+l =f(xh). Other- 

wise, set Xh+l = Xh, yh+r = x. To S, adjoin the new constraint 

lb(U) := ((p(x”) - cp(x”) , u) 5 1 (26) 

to define S, + 1. 
Step 4. Compute the vertex set Vh+1 of Sh+l (from knowledge of V,>. Set 

Cl+1 = V,+,\V, . Go to iteration h + 1. 

4. Convergence and Other Issues 

(I) CONVERGENCE 

THEOREM. The above Algorithm either terminates after finitely many steps, 
yielding a global minimizer, or it generates an infinite sequence {x”} In the latter 
case, any cluster point of the sequence {X “} is a global minimizer (in particular, if 
X h remains unchanged for all h 3 ho then X h0 is a global minimizer). 

Proof. We only sketch the proof, since it is much similar to the convergence 
proof in [13]. First it is easily checked that the coefficient vector of the cut (26), 
i.e., the vector cp(x”) - 9(x”), is a subgradient of the convex function g(u) at a 
point uh, i.e., p(xh) - +v(x”) E dg(uh). Hence, applying a theorem on convergence 
of outer approximation methods (see [23]) to the set D* = {u : g(u) < l}, the 
sequence {u”} and the cuts (26), we conclude that every cluster point of the 
sequence {u”} must belong to D*. This implies g(u”) 1 1. Now let 2 = lim XhU so 
that f(i) = l&nr K,. Since for every h : 

max{ g(u) : u E CE> s max{ g(u) : u E S,} = g(d) $ 1 

(here C, stands for CJ, it follows that max{ g(u) : u l _fl r= 1 Ch*,}-< 1, hence 
fl r=, C,* 

:: 
C D* and consequently, U T=r Ch, 1 D. Thus, D C U z=, C,,“, i.e., for 

any t E D there exists h, such that t E ch . Hence, for any x E G there exists h, 
such that f(x) 3 -yh, 2 q, proving the global optimality of P. 

(II) ASSUMPTION 0 E int c, (see (15); recall that C, stands for C,,) 

We assumed 0 E int C, in order that CT be compact. This assumption amounts to 
requiring that a feasible point x0 be available with f(x") > f(X). However, since 
problems (8) are assumed to be solvable by some known efficient solution, a 
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feasible solution (i.e., a point in G) can easily be found. Therefore, normally this 
assumption should be easy to satisfy. 

In any case, the algorithm could be slightly modified to bypass this assumption. 
In fact, without the condition 0 E int C,, CT may be unbounded, so we must take 
S, to be a (possibly unbounded) polyhedron enclosing CT (and contained in K*). 
Then V, should be understood as the set of all vertices and extreme directions of 
S,. In Step 2 the condition g(u”) 4 1 should be replaced by: g(uh) 6 1 and uh is a 
vertex, or g(v”) < 0 and uh is an extreme direction. Moreover, the right hand side 
of (26) should be 1 if uh is a vertex, and 0 if uh is an extreme direction. 

(III) CONSTRUCTION OF THE INITIAL POLYHEDRON S, 

If 0 E int C, (see assumption (15)), then we can select (Y > 0 so that - (Ye E C, 
(where e = (1,. . . , 1) E RP). We can then prove that the polytope 

(27) 

contains C:. Indeed, since C, is closed and convex, C, = (CT)*, hence - (ye E C, 
implies -((ye, u) <l for all uE CT. 

If 0 may not be an interior point of C, then we simply take S, = K*. 
A special case of interest is when the matrix A has just k rows (which must then 

be linearly independent since rank A = k; recall that A is the matrix in (7)). In 
this case the system Au = e is consistent, i.e., we can compute a point w such that 
Aw = e. Let CY 3 1 be any number such that (Y w E C. Since obviously -(Y w E 
intKitfollows that -czwWintC,, hence -(aw,u)&l for alluECT. Thatis, 
the polytope 

S, = u E K* : 5 wjuj s 1 
j=l a 

(28) 

contains CT and can be used to start the algorithm. 

(IV) CONSTRUCTION OF THE CUT (‘26) 

The cut (26) can be improved in most cases as follows. 
Let 0,> 1 be any number such that O,((p(xh) - (p(x’)) E C,,, (note that C,,+i 

may be larger than C,). Then 8, < ( &rh) - (p(x’), u) s 1 for all u E Cl+,. 
Therefore the cut Ih(u) < 1 /oh eliminates uh without excluding any point of Cl+, 
and so can be used instead of (26). In practice one can take 

@( = sup{B : 8(dXh) - dxo>> E CA+,} . (29) 

(V) COMPUTATION OF V,,, 

To compute the vertex set V,,, from knowledge of Vh we can use, for example, 
the method in 1271 ( see also [23]). If k is not large then this method should not 
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present difficulty, Especially, when k = 2 (as it happens in certain problems of 
interest) the computation is very simple. 

Anyway, to keep the size of the sets Vh within manageable limits, one can from 
time to time restart the whole procedure, using a different initial point x0 and the 
best value yh so far obtained as the new yl. Also in certain cases it may be 
advisable to solve the (C”, D*)-problem by the Normal Conical Algorithm as 
developed in [28] (see also [23]). 

5. Applications 

The above approach seems to have many potential applications. In this section we 
only examine some particular classes of problems for which this approach has 
actually proven very successful. 

I. First let us consider problems of the form 

<Q> minimize f(x) subject to x E G , 

where G is a convex set in R” and f(x) = $(qo(x)), satisfying the following 
conditions: 

(a) p : IR+ R* is a continuous mapping defined on some open set 0 > G ; 
(b) $ : T+ R is a continuous quasiconcave function on some convex closed 

subset T of R* containing q(R); 
(c) There exists a cone K = {t E RP : At s 0} such that : 

Vt” E q(G) to + KC {TV T: 4(t) z= $(t’)} , (30) 

A is a q x p matrix with rank A = k (31) 

and Ap(x) = (r,(x), . . . , r,(x)) where 

Ti(X) (i = 1, . . . ) q) are concave functions on G. (32) 

It is easily ve_rified that problem (Q) has the Generalized Rank k Property. 
Indeed, here C, = {t E T: I+!J(~) 3 r} for any y Ef(G) and the subproblems (24) 
(with u E R z ) are ordinary convex programs 

maximize 5 uiri(x) subject to x E G (33) 
i=l 

which can be solved efficiently by known standard algorithms. Therefore, the 
above approach can be applied to problem (Q). 

PROPOSITION 2. For each h E R z such that Ci4,1 hi = 1 let x, be un (arbitrary) 
optimal solution of the subproblem (33) with u = h. Then a global optimal solution 
of (Q) is given by the vector xi, where 

hi argmin f(x,): AERT , f: hi = 1) . (34) 
i=l 
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Proof. This Proposition has been established in [ll] for k = 2 but the proof 
carries over to the case k > 2. Specifically, let us apply the Algorithm of Section 3 
to problem (Q), where the starting feasible solution i ’ is taken to be a x* for 
some A = A’, while for each u E V, in Step 1, x(u) is taken to be the x, that 
corresponds to A = ul(CF=, ui) where u E Rz is such that u = ATu. Then at any 
stage the current best solution Xh is some x,. Hence, the conclusion. 

CONSEQUENCE. To solve (Q) one can solve the parametric convex program 

maximize g A,r,(x) s.t. XEG ( AER:, i hi=l) (35) 
i=l 

and for each A E Rz, CfZl Ai = 1, take an optimal solution x,. Then a global 
optimal solution of (Q) is the xh that minimizes f(x,). 

Of course, solving the parametric program (35) is not easy when 4 > 2 and G or 
the functions ri(x) are nonlinear. Algorithm 1 proposed in Section 3 is just a 
procedure that allows us to solve (35) only for an adaptively constructed sequence 
of values A. 

There is, however, a case when solving the parametric program (35) may be 
more efficient than using Algorithm 1. This is when 4 = 2 and G is a polyhedron, 
while each ri(x) is a convex piecewise affine function. Indeed, in that case, if 
ri(x) = max{r,(x): j E Ji} (rij affine functions), then (35) becomes 

maximize as1 + (1- a)s, 

s.t. rii(x)<si (jEJi, i=l,2), xEG (36) 

where (Y E [0, l] and so (35) reduces to an ordinary parametric linear program. If 
a1 =o<. . . < (Ye = 1 are the breaking values of the parameter (Y and xi is a basic 
optimal solution of (36) for CY E [ aj-i, ~y1.1 then a global optimal solution of (Q) is 
given by the vector xi that minimizes f(x’) (j = 1, . . . , N - 1). Note, however, 
that even in this case, if the computation of the value f(x) is time consuming then 
Algorithm 1 may be preferred to the parametric approach since it may require 
computing less values of f(x). 

EXAMPLE 6. The problem considered in Example 1 (minimizing f(x) := (c’x + 
d,) X (c”x + d2) over a polytope M C {x: cix + d, > 0 (i ; 1,2)}) is a problem 
:Qi ;;Lth 1G = M,arp(~) = x (identityi mapping), G(t) = (c t + dl)(c2t + d2), K = 
t : c t>O, c tsO}, rj(x)=-cx (i=1,2). Hence, as said in the Intro- 

duction, this problem reduces to solving the ordinary parametric linear program: 

minimize ( (YC’ + (1 - LY)C~, x) subject to x E M (o E [0, 11) . 

EXAMPLE 7. The problem considered in Example 2 (minimizing f(x) := 
Cp+ qj(hj(x)) over x E R”) also is a problem (Q) with G = R”, q(x) = 
(h,(x), . . . , h,(x)), q!(t) = CT+ qi(ti), K = {t E RP : t 3 0}, rj(x) = -h,(x) (j = 
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1 2 . . * , p). Hence, if p = 2 and all the functions hi(x) are polyhedral then we can 
solve it by solving an ordinary parametric linear program 

> 

EXAMPLE 8. Consider the max-min problem studied in [29]: 

m$xmp(cx+dy) s.t. Ux+VySb, x20, ya0. (37 

Setting P = {x 2 0:3y > 0, Ux + Vy < b}, h(x) = min{dy : Ux + Vy s b, y 2 0} 
we can rewrite the problem as 

max{ cx + h(x) : x E P} . (38) 

Since h(x) is convex (and piecewise affin’), this is a problem (Q) with f(x) = 
-cx-h(x), p(x)=x, e(t)=-ct-h(t), T= P, K={t: ctG0, UtsO}, Aq(x)= 
(Ux, cx). Indeed, denote by M(x) the constraint set of the minimization problem 
that defines h(x). Then for any to E P, if y E M(t’) (i.e., y 3 0 and Ut” + Vy d b) 
then for all t such that U(t - to) < 0 we will have Ut + Vy < Ut” + Vy < b, so that 
y E M(t); hence M(t”) > M(t), and consequently, h(t) c h(t’). Therefore, t - to E 
K implies ct S ct’, h(t) S h(t’), p roving that to + K C {t E P : ct + h(t) d ct” + 
h(t’)}. The verification of other conditions of (Q) is straightforward. It then 
follows from the above results that if the matrix 

has not a full rank (as it often happens) then the problem (37) can be solved by 
Algorithm 1 as a problem in smaller dimension. In particular, when U has a single 
row then by Proposition 2 the problem can be solved by solving an ordinary 
parametric linear program. 

II. Problems of the form (Q) can be characterized as those in which the 
nonconvexity is concentrated in the objective function. Since, however, there is a 
duality relationship between objective and constraints (see [30]), it is natural that 
our results can also be applied to problems in which the non-convexity is 
colzcentruted in the constraints. These problems can be given the general formu- 
lation: 

(RI minimize f(x) subject to x E G\int F , 

where F is a closed set in R”, while f(x) is a continuous convex function and G is a 
closed convex set (in R”). Of course it is assumed here that the problem 

minimize f(x) subject to x E G (39) 

has no optimal solution feasible to (Ii) (otherwise the constraint x$ int F could 
simply be omitted). That is, a point x0 is readily available such that 

x’~GnintF, f(x’)<inf{f(x):xrZG} (40) 

(for example, x0 is an optimal solution of (39)). 
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For any x$Z F, since x0 E int F, the intersection [x0, x] n a F of the line segment 
[x0, x] with the boundary aF of F is a nonempty compact set. Let n(x) E 
argmin{ f(x’) : x’ E [x0, x] rl 8 F}. We will assume that the computation of m(x) is 
straightforward (which is the case if F is convex or is such that the points where 
[x0, x] meets 8 F are finite in number and can easily be determined). The 
convexity of f, G and the condition (40) then imply the following 

PROPOSITION 3. Let X be any feasible solution of problem (R) and G(x) = 
G n {x : f(x) s f(X)}. Zf x E G(x)\F then T(X) is a better feasible so&ion than X. 

Proof. Since f is convex and f(x”) <f(x) by (40)) it follows that f( Ax’) + (l- 
h)(x)< f(x) VA E (0, 11. Hence, r(x) = Ax0 + (1 - A)x for some AE (0, l] and 
f(rr(x)) <f(x) & f(2). On the other hand, by convexity of G, r(x) E G. Hence, 
T(X) E G n aF, i.e., r(x) is feasible to (R). 

Problem (R) is said to be regular (stable) if any feasible point of it is the limit 
point of a sequence of interior feasible points (i.e., points that belong to the 
interior of the feasible set). It is easily verified that for any closed set F, C int F, 
the “perturbed” problem 

CR,) minimize f(x) subject to x E G\int F, 

is regular. 

PROPOSITION 4. Let X be any feasible soZution of (R). If 

G(i) c F 

and if the problem is regular then X is a global optimal solution. 

(41) 

For a proof of this proposition, see, e.g., [30]. 
Thus, under the regularity assumption, transcending an incumbent X in the 

problem (R) amounts to solving the (G(x), F)-problem. Therefore, the above 
approach can be applied to solve this problem as a problem in Rk whenever the 
Generalized Rank k Property holds for (G(X, F)). 

A feasible solution X is called a global &-optimal solution of problem (R) if 
f(x) > f(X) - E Vx E G\int F. Clearly, without any regularity assumption, the 
condition 

G,(x):=Gn{x: f(x)sf(x)-&}CintF 

is always sufficient for X to be a global s-optimal solution. 
Let us examine in more detail problem (R) when 

F= {xER: $(cp(x))~O}, 

(42) 

with R being some open set containing G and +, cp two mappings satisfying the 
conditions (a)(b)(c) stated at the beginning of this section. With the purpose of 
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finding a global c-optimal solution, we define 

C=&tO, D=E-to, g(u)=sup{(v,t):tED}, 

where e={tET: $(t)>O}, fi=q(GE(X)) and t’=q(x’)EDnintC. From 
Algorithm 1 we can then derive the following 

ALGORITHM 2 (for solving (R) under assumption (43)). 

Initialization. 
If a feasible solution X1 is available, set 7, = f(X ‘), 

G,=Gn{x: f(x)sy,-E}. 

Otherwise, set ‘yl = +a, D, = D. Construct an initial polytope S, with a known 
vertex set V, and such that C* C S, C K*. Set G1 = V,, r = 1, h = 1 (r is the 
iteration counter, h is the cycle counter within the current iteration). 

Iteration r = 1,2, . . . . 
Step h.1. For each u E c, solve 

(Wu)) max{(u, P(X)) : x E G,) 

(recall that (u, q(x)) = Ci4,1 u,ri(x) for u = A’u, see (33)). Let x(u) be an optimal 
solution of (SP(u)) and g(u) = (u, ip(x (u>> - cp(x”>). 

Step h.2. Select uh E argmax{g(u): u E Fh}. If g(u”) < 1, then terminate (see 
Remark 3 below) : if ‘y, < + 00 then X’ is a global e-optimal solution: if yr = +m, 
then problem (R) is infeasible. 

Step h.3a. Let xh = x(u”). If r,!~((p(x”)) 3 0 (i.e., xh E F) then let 

S h+l=shn I u: (~(xh)-&o)d+$ ) I 

where 

e, = sup{8 : 8($(X”) - q(xO)) E C} 

(see (29)). Compute the vertex set V,,, of Sk+,. Let p,,, = V,,,\Vk. 
Set h t h + 1 and return to Step h.1. 
Step h.3b. If @(cp(x”)) < 0 ( i.e., xh E G,\F) then compute I (see Proposi- 

tion 3) and set X r+l = IT, x+1 = f(X ‘+l), 

G r+l=G,n(x:f(x)~~~+l-&), Dr+l=(~(Gr+J-t~. 

Set r t r + 1 and return to Step h. 1. 

REMARK 3. If g(u”) < 1 then g(u) < 1 Vu E S, and from this it follows that 
D, C int C, hence G, C int F and X ’ is a global c-optimal solution (if X’ exists, i.e., 
3: < +a). Indeed, if D, gint C so that there is a ?E D,\int C, then since tE D, 
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and C* C S,, we would have (u, ?) d g(u) < 1 Vu E C*; on the other hand, since 
F$ int C, by the separation theorem, there would exist a U such that (5, t) G 
1 Vt E C, while (6, r) = 1, i.e., a V E C* but (6, t) = 1, a contradiction. 

REMARK 4. Algorithm 2 involves a number of iterations during each of which 
the incumbent X’ remains unchanged. Since from one iteration to the next the 
value x decreases at least by E > 0, the number of iterations is finite. On the other 
hand, each iteration solves a (G,, F)-problem by Algorithm 1, therefore it either 
terminates after finitely many steps, yielding a global E-optimal solution, or 
generates an infinite sequence of xh. In the latter case the current incumbent X’ is 
actually a global c-optimal solution (provided the problem is regular) : indeed, by 
Theorem in Section 4, we then have G, C F. 

As illustrations, let us consider some examples. 

EXAMPLE 9. Let F = {x E 0 : II~~‘=,qj(x) 2 l} , where 0 is an open set in R” such 
that G C Q C {x : qj(x) > O}. That is, the problem is 

minimize f(x) subject to x E G , (43) 

Since the function I,!J: R “, + R defined by t)(t) = IlT=, t, - 1 is quasiconcave and 
F= {x E a: $(cp(x)) >O} with q(x) = (qr(x), . . . , cp,(x)), conditions (a) and (b) 
are satisfied. It is also immediate that for any to E R “, and any t E R “, we have 
q!r(t” + t)a $(t”). Hence the cone K= Rf = {tE RP: tj?=O (j= 1,. . . , p)} satis- 
fies condition (30) with A = -I, Z being the identity matrix, k = p. Here Aq(x) = 

(-cpl(x)> . . . > -cp,(4h so that the problems (33) are 

minimize ]$i u,c~~(x) subject to x E G . (44) 

Therefore, if the functions cp,(x) are convex then condition (c) is satisfied as well, 
and Algorithm 2 can be applied to solve this problem. Since p is usually very 
small compared to ~1, this method which basically reduces to solving a sequence of 
convex programs of the form (44) should be quite efficient. Especially, when 
p = 2 (problem studied by Kuno and Konno in [31]), the underlying global 
procedure, i.e., the construction of the polytopes S, and the computation of their 
vertex sets V,, is very simple. If, in addition, f(x) is linear, G is a polyhedron and 
the cp,(x) are linear, too, as in the problem studied by Thach and Burkard in [21], 
then the method furnished by Algorithm 2 is quite near to that of these authors. 
In a subsequent paper we will present an adaptation of Algorithm 2 to the case 
p = 2 which allows the problem to be solved through ordinary parametric linear 
programming. 
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EXAMPLE 10. The two level optimization problem considered in Example 3 in 
the Introduction can be reformulated as 

minimize clx + d’y subject to A ,x + B,y c g, , 

A,x+B,ysg,, .xERP,, yER:, d’yaw(x), 

where w(x) is the optimal value of the linear program (depending on x) 

(L(x)) min{d*y: A,x+B,ySg,, ~200). 

Since o(x) is obviously a convex function, this appears to be a problem (R) with 
f(z) = clx + dly, G={z=(x,y):Aix+Biy&gi (i=1,2), XERP,, yERP,}, 
F = {z = (x, y) : d*y - w(x) 3 O}. The conditions (a)(b)(c) are fulfilled with 
q(z) = z (identity mapping), +(z) = d2y - o(x) (concave function), K = {z = 
(x, Y): A,x 4 0, d*y 3 0} and k being the rank of the matrix 

(k is usually smaller than p -t q). Indeed, for any z” = (x0, y”) E RP,+’ and any 
w = (u, u) E L we have d*( y” + U) > d2yo; furthermore, since A,u 4 0, the con- 
straint set of the program L(x” + u) contains that of L(x’), hence 0(x0 + U) < 
0(x0) and so $(z” + w) 2 $(z’), proving that 

z” + K c (2 : q(z) 2 t/qzO)} . 

Therefore, the above method can be applied to this problem. It turns out that 
because of the specific structure of this problem (linearity off and G), Algorithm 
2 as applied to it can be made finite. For the details, we refer the interested 
reader to the paper of Tuy, Migdalas, and V&brand [l-5]. When k = 2 (the matrix 
A 2 has a single row, say a* E Rq) one can even show that the problem can be 
solved through ordinary parametric linear programming. 

Appendix 

THEOREM (see [l]). A y II nonempty closed set S in R” is the projection on R” of a 
set in R”+l which is a difference of two convex sets. 

Proof. (This proof is different from that in [l]). We first show that S = {x E 
R” : g(x) - 1 x )* < 0}, where g(x) is a convex function. For any y @fs denote by 
d( y, S) the distance from y to S and let B( y, r) be the ball around y with radius Y. 
Then it is easily seen that 

S = yfs (R”\B(y> d(y, 4). 

That is, x E S if and only if Ix -y 1’3 d*(y, S) Vygs, i.e., if and only if 
Jx I* + 1 y I* - 2xy 2 d”(y, S) Vy@S, i.e., if and only if 

1 x I2 a sup{2xy - 1 y )* + d*( y, S) : y@S} . 
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Denote by g(x) the function on the right hand side. Clearly g(x) is convex since 
for each fixed y the function x*2xy - 1 y I2 + d2(y, S) is affine. Hence, S = 
{x: g(x)-)x)2~O}.NowS={x:3(x,t)ERn~1;g(x)~~t,t~~x~2},thereforeS 
is the projection of D = C\B with C = {(x, t) : g(x) s t} and B = {(x, t): ) x I2 < 
t}. The convexity of C, B is obvious. 
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